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Introduction

The world is experiencing an unprecedented health crisis during the 
spread of COVID-19 (SARS-CoV-2, or Severe Acute Respiratory 
Syndrome Coronavirus 2). While the pandemic appears to be less 

severe on the African continent than in other geographic regions1 (Global 
Change Data Lab 2021), its economic impact is significantly more pronounced. 
COVID-19 is upending livelihoods, damaging business and government 
balance sheets, and threatening to reverse development gains and growth 
prospects for years to come in Africa south of the Sahara (IFC 2020). The World 
Bank forecasts that Africa south of the Sahara will go into recession in 2020 
and that COVID-19 will cost the region between $37 billion and $79 billion in 
output losses in 2020 alone. The informal sector, a significant source of income 
and employment, will be the hardest hit. 

In the agricultural sector, COVID-19 threatened to lead to a severe food 
security crisis in the region in 2020, with disruptions in the food supply chain 
and expected contractions of 2.6 to 7 percent in agricultural production (Zeufack 
et al. 2020). Travel bans, border closures, and the late reception and use of 
agricultural inputs such as imported seeds, fertilizers, and pesticides could lead 
to poor performance in food crop production. Another layer of disruption 
introduced by the mobility restriction measures is the scarcity of agricultural 
workers, mainly seasonal workers. Lockdown measures and border closures limit 
seasonal workers’ ability to get to farms in time for planting and harvesting activi-
ties (Ayanlade and Radeny 2020; ILO 2020). Moreover, delivery of most of the 
imported agricultural inputs relies on air travel, which has been impacted heavily 
by the pandemic (Vilardell and Baenas 2020). Such transportation disruptions 
can also negatively affect the food crop production system.

It is challenging to fully understand the relationships between the COVID-19 
containment measures taken by countries and their impacts on food crop 
production. Comprehending these relationships would require studies on the 
impacts of the containment measures on farmers’ and seasonal workers’ mobili-
ties and the prompt reception of seeds, fertilizers, and pesticides for cropping 
activities. The kinds of datasets that would allow these studies are not yet avail-
able to the best of our knowledge. However, it is risky to wait to take action until 
food crop production statistics are available at the end of the agricultural season. 

1 As of April 19, 2021

Instead, it would be better to have an estimate of the most likely food crop 
production levels before the harvesting period to allow for better planning and 
early policy actions. For that goal, data are most needed.

Access to reliable and timely data in the agricultural sector has been prob-
lematic in Africa for a long time. Even in regular times, there are difficulties 
in accessing agricultural statistics. The issue is even more pronounced in crisis 
times, such as the current pandemic, when, paradoxically, the data are most 
needed. Uninformed decision-making is the most significant consequence of the 
lack of data and analytics. Making decisions based on anecdotal facts creates inef-
ficiencies in problem-solving. Much of the assumed knowledge about agriculture 
in Africa may no longer be valid, given Africa’s rapid economic transformation, 
fast urbanization, demographic and climatic changes, and, more importantly, the 
scarcity of quality data (Christiaensen and Demery 2018). In a rapidly changing 
world, the facts that drive research and policy focus quickly become outdated. 
COVID-19 highlighted the need to improve African food systems’ resilience. 
Access to timely, spatially disaggregated, and accurate agricultural statistics can 
play a significant role in achieving that goal. That is the main focus of this chapter.

This chapter assesses food crop production levels in 2020—before the 
harvesting period—in all African regions and for staples such as maize, cassava, 
rice, and wheat. Production levels are predicted using the combination of remote 
sensing data retrieved from satellite images and a machine learning artificial 
neural networks (ANNs) technique. The remote-sensing products are used 
as input variables in the Africa Crop Production (AfCP) model developed by 
AKADEMIYA2063. The input variables are the normalized difference vegetation 
index (NDVI), the daytime land surface temperature (LST-day), rainfall data, 
and agricultural lands’ evapotranspiration (ET). The model’s outputs are pixel-
level maps of agricultural production forecasts for major crops in all African 
countries. The product and input time-series data are made publicly available on 
a web-based platform, the Africa Agriculture Watch, to facilitate access to such 
information for policymakers and other stakeholders.

The chapter is organized as follows: Section 2 provides the underlying 
conceptual framework that explains the basis for the use of remote sensing 
products (RSPs) and machine learning for resilient food systems. Section 3 
introduces all variables that have been considered for the predictive model, the 
methodology used to select the crops for each region, and a methodological 
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description of the machine learning predictive modeling framework. Section 
4 presents the predicted food crop production for each region and crop and 
discusses potential factors related to COVID-19 that might have caused a decline 
in food crop production in some African countries. Section 5 outlines the 
limitations of the model and the direction of future research. Finally, Section 6 
proposes recommendations to strengthen African food system resilience through 
an improved data environment and analytics using emerging technologies.

The Basis for the Use of RSPs and Machine 
Learning for Resilient Food Systems
A resilient food system is determined by its capacity to withstand and recover 
from disruptions and to ensure a sufficient food supply for communities. 
Another aspect of food system resilience is the availability of evidence-based 
technical assistance to help policymakers and decision-makers more effectively 
prepare for and respond to shocks. Technological advancements can help with 
that goal. Remotely sensed data via satellite images are now democratized 
and show a sufficiently high spatial resolution to include a large proportion of 
agricultural lands across the continent, and machine learning techniques offer 
a way to build robust predictive models relieved from rule-based approaches. 
This section provides a conceptual framework for understanding the building 
blocks of our approach to using RSPs and predictive modeling through machine 
learning techniques for better-informed policymaking in a time of crisis such as 
the COVID-19 pandemic.

The Basis for the Use of RSPs for Decision-Making in 
Agriculture
Real-time (or near real-time) data gathering and analysis is crucial to providing 
a clear picture of any crisis dynamic and monitoring the effects of simultaneous 
shocks. The availability of accurate and frequently updated data that reflect the 
status on the ground requires significant coordination and collaboration, and 
robust data systems. 

In the African context, the use of remote sensing in the agricultural sector 
is hindered by a lack of reliable ground-truth data. The cost of generating 
ground-truth data is usually prohibitive, primarily due to the size of the conti-
nent. Moreover—and most importantly—the African food production system 

is characterized by scattered, small-size farms with significant crop spatial 
heterogeneity. For instance, most African farmers are smallholders with farm 
sizes of fewer than 2 hectares on which several crops are grown simultaneously. 
Such a complex cropping system does not facilitate ground truthing for machine 
learning applications. The diversity of agroecological zones adds another layer of 
complexity, as does the frequent cloud cover. These challenges often do not allow 
satellites’ optical sensors to collect ground spectral signatures for an extended 
period of time in some countries. 

The levels of data quality, frequency, and disaggregation do not allow a 
thorough analysis of cropping activities, early anomaly detection, and forecasting 
for African food production systems. Through Earth observation, RSPs show 
promise in significantly reducing the underlying gaps in data quality, size, 
disaggregation, and frequency. RSPs are used in two main ways in agricultural 
policymaking. First, they are used to provide disaggregated views of agricultural 
lands and their corresponding biogeophysical parameters. Second, they are used 
to monitor the effects of agricultural policies on the ground. 

RSPs use the spectral signature of earth’s features to monitor agricultural 
lands. Vegetation indexes, such as the NDVI derived from satellite images, 
provide an assessment of the health of crops by using measurements of the rate 
of leaves’ infrared reflection as a proxy for their visible light absorption rate 
(light absorption is needed for photosynthesis). RSPs measure several other 
biogeophysical parameters related to food crop production, such as ET (Running 
et al. 2021) and LST-day (Wan et al. 2015), and provide data for indexes like the 
enhanced vegetation index (EVI) (Didan 2015). In general, the combination of 
measurements of specific spectral layers allows a determination of the agricul-
tural land’s biogeophysical status at a community level (see Figures 9A.1, 9A.2, 
and 9A.3 in the appendix for NDVI, LST-day, and rainfall anomalies for 2020).

Using RSPs to monitor changes on the ground due to agricultural policy 
has been successful in other parts of the world. Harnessing moderate resolution 
imaging spectroradiometer (MODIS) NDVI time-series signals, Lein (2012) 
showed how a tax-free agricultural ordinance in 2006 impacted the adoption 
of multiple cropping practices in China. Arvor and colleagues (2011) derived 
indexes from satellite images to study the relationship between agricultural 
dynamics in Amazonia and the region’s existing public policies during the period 
from 2000 to 2007.
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Moreover, satellites revisit the same area many times a year—typically, 
every five days for Sentinel-22  and daily for MODIS3 —allowing practitioners to 
monitor land-use and land-cover changes (Li et al. 2020), identify crop taxonomy 
(Kpienbaareh et al. 2021) and cropping activities (Rezaei et al. 2020), and assess 
surface water availability (Pekel et al. 2016). Another added value of using RSPs 
to improve agricultural statistics is the capacity to provide disaggregated informa-
tion at a pixel level and disentangle the data from conventional administrative 
entity-based maps. Several weeks (or months) would be necessary to cover the 
same area with field agents, and still, the results would be less accurate. This 
capacity to provide community-level detail on maps could allow for targeted 
responses where they are needed the most. However, RSPs alone cannot provide 
estimates of potential future agricultural production and yield—that requires a 
predictive modeling framework.

The Basis for the Use of Machine Learning for  
Decision-Making
General-purpose technologies have triggered a wide range of innovations 
globally. The fast pace of technological advances has reduced the cost of 
technology products and services, encouraged wide adoption, and significantly 
increased data generation over the last three decades. Combined with advances 
in computer modeling, these advances have opened up a new “technium” (that 
is, the accumulation of inventions that humans have created, and which society 
depends on as much as nature) of data-driven technologies and machine learning 
techniques. 

Machine learning is a set of techniques particularly suitable for making 
predictions under certain circumstances. These techniques have the capacity to 
mimic key characteristics attributed to human intelligence, such as vision, speech, 
and problem-solving. Several papers have shown how machine learning models 
outperform humans in accuracy in some tasks (Buetti-Dinh et al. 2019; Mnih et 
al. 2013; Silver et al. 2016). This performance has been possible due to the combi-
nation of significant increases in data availability, improvements in computational 

2 Sentinel-2 is an Earth observation mission from the Copernicus Programme that systematically acquires optical imagery at high spatial resolution (10 m to 60 m) over land and coastal waters. The mission 
is currently a constellation with two satellites, Sentinel-2A and Sentinel-2B, operated by the European Space Agency.

3 MODIS is the key sensing instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra MODIS and Aqua MODIS are capturing the entire 
Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths.

power, and advancements in algorithmic techniques in the last three decades. 
The most commonly used supervised-learning technique uses examples and 
experience to teach how humans make predictions. The old approach of transfer-
ring human knowledge to machines through sequential steps is being replaced 
with an approach of providing machines with data—the same data humans have 
access to and use to learn. Since a machine does not have to learn other tasks 
(as a human does), its resources are fundamentally oriented toward learning the 
relationship between the input data and the corresponding outcomes. The result 
is a faster learning process and better accuracy in a specific task.

As in previous technological revolutions, the most significant impact would 
be expected in sectors that are not traditional users of these technologies, such 
as agriculture. Machine learning techniques can support efforts to forecast 
agricultural productions and yields (Ly and Dia 2020; Kaneko et al. 2019), 
manage natural resources, and reduce uncertainty and risk across the agricultural 
sector. African farmers are mostly smallholders (Conway, Badiane, and Glatzel 
2019) facing significant uncertainties that can lead to poor performance, such 
as erratic rainfall, lack of knowledge about biogeophysical parameters and soil 
water content, and inadequate planting periods. The capacity to forecast agricul-
tural production given these uncertainties is pivotal for farmers, planners, and 
policymakers.

Prediction is at the heart of decision-making; however, predictions are just 
one component of the process. The other decision-making components are 
judgment, action, outcome, and three types of data that include input, training, 
and feedback (Agrawal, Gans, and Goldfarb 2018). When decision-makers have 
access to the same input and training datasets and the same feedback loop, the 
two key factors that impact their interventions are judgment and predictions 
based on context. While judgment is a subjective concept that depends on back-
ground and experience, predictions can be objective and follow mathematical 
formulations; therefore, they can be improved faster and enhance the entire 
process of designing and implementing informed strategies.
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Combining RSPs and Machine Learning 
for Resilient Food Systems
The path from RSPs and machine learning to policymaking is not straight-
forward, especially in Africa. The requirements for sustainable use of RSPs 
in policymaking for the agricultural sector (or any sector that requires RSPs) 
necessitate political will, technical expertise in remote sensing and data analysis, 
and the institutional strength, including sufficient financial and infrastructural 
resources, to deal with those tasks. Our rationale for combining RSPs and 
machine learning to build resilient food systems is as follows: the spatial and 
temporal resolutions of RSPs allow a disaggregated view of agricultural lands, 
with several indicators that assess crop growing conditions at a community level. 
As inputs into the machine learning predictive modeling framework, RSPs are 

expected to contribute to the development of reasonably accurate predictions 
about food crop production before the harvesting period. This helps build a 
more resilient food system by improving knowledge about potential agricultural 
production at the community level. 

Public availability of consolidated, ready-to-use biogeophysical RSPs and 
food crop production forecast maps would reduce the technical, infrastructural, 
and institutional barriers that have the potential to prevent African countries 
from using RSPs and machine learning for resilient food systems. Table 9.1 
shows the underlying techniques and concepts that must be harnessed to provide 
near real-time biogeophysical data and food crop production maps at the 
community level for all African countries. The corresponding outputs, outcomes, 
and constraints involved in decision-making in food production systems are 
illustrated.

TABLE 9.1—TECHNIQUES, OUTPUTS, AND OUTCOMES TO HARNESS RSPS AND MACHINE LEARNING FOR DECISION- AND 
POLICYMAKING FOR FOOD CROP PRODUCTION

Technique and Concept Output Outcome and Constraints Lifted

The use of RSPs and machine learning to assess 
policies impacts on food crop production systems.

Use the time-series data provided on the web-based 
tool to assess if the policy goals are reached or not, 
and take corrective actions.

Decision-making and policy making based on 
forecasts and biogeophysical parameters time series.

Use the food crop production disaggregated forecast 
map at the community level to plan and strategize 
based on the scenario provided by the model.

All the information based on RSPs and their most 
likely future outcomes are made available to decision-
makers to provide impactful policies.

The use of web-based tools to make datasets and 
maps publicly available. 

Make the food crop production forecast maps and 
time-series data used as inputs available in a web-
based tool.

Remote sensing products and food crop production 
forecasts at the community level are made publicly 
available, lifting the data access constraint.

Forecasts based on the combination of RSPs and ML 
and third-party data.

Use the combination of input variables data and ML 
method to learn the data patterns and use the data 
structure learned for future predictions.

The technical field-level expertise needed for a 
machine learning predictive model is not a constraint 
anymore.

Remote sensing products from satellite images and 
machine learning techniques.

Make available preprocessed input maps such as 
NDVI, LST, rainfall, ET, production maps as labels, and 
crop masks and choose ML technique.

The lack of technical skills related to data processing 
methods for satellite image is not a constraint 
anymore for analysts, decision-makers and 
policymakers.

Source: Authors.
Note: ET = evapotranspiration; LST = land surface temperature; ML = machine learning; NDVI = normalized difference vegetation index; RSPs = remote sensing products.

http://resakss.org
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Remotely Sensed Data, Crop Selection, and 
Predictive Modeling Framework
Food crop production estimations based on remote sensing can be built 
through two main approaches: (1) using remotely sensed data as inputs into 
agro-meteorological or plant-physiological models, and (2) building a direct 
mathematical relationship between remotely sensed data and crop production 
(Huang and Han 2014). The first approach is based on mechanistic descriptions 
of crop growth, development, and production simulated through mathematical 
functions. Methods like this have shown satisfactory results but cannot exploit 
datasets to their full extent due to constraints related to the way crop growth phe-
nomena are described with mathematical functions. The second approach usually 
relies on derived indicators from remotely sensed data and their correlation 
with crop growth and yield. In the analysis in this chapter, we follow the second 
approach to predict food crop production values based on inputs derived from 
RSPs. In this section, we describe the data used, the selection of crops considered, 
and the construction of the predictive modeling framework, AfCP.

Biogeophysical Remotely Sensed Data for Food Crop 
Production Forecasts
One of the most known and used parameters to characterize vegetation cover 
is the NDVI, derived from near-infrared and red bands from multispectral 
sensors. The NDVI indicator is extensively used to characterize vegetation 
cover due to its close relationship with several vegetation parameters such as 
leaf area index, the fraction of absorbed photosynthetically active radiation, 
and green biomass. Many studies have been conducted to predict crop yield 
from NDVI signals (see Liu et al. 2019; Rembold et al. 2013; Rasmussen 1992, 
1997). However, there are limitations to using only NDVI as a proxy for crop 
yield estimation due to its dependencies on the crop, soil, and leaf types. Indeed, 
even though NDVI is a good proxy for aboveground biomass production, the 
relationship between biomass and yield varies in time and space (Leroux et al. 
2016). Our approach emphasizes the use of several RSPs, and thus ensures the 
use of even more information about crop status than the use of only NDVI.

Several studies conducted in the 1970s have shown that final crop yield 
can be related to thermal indexes (Idso, Jackson, and Reginato 1977; Smith et 

al. 1985). Because of this, an LST-day layer has been used as a proxy for crop 
water stress in our methodology. Water availability is also a key component for 
crop growth and yield; therefore, it is essential when building a crop production 
model to take it into account. However, in most African countries, agricultural 
lands are rainfed (Stockholm International Water Institute 2018), so rainfall data 
has been derived from the climate hazards group infrared precipitation with 
station data RSPs.

Soil water content and its dynamic in the ground under agricultural lands is 
an important parameter to address. The underground water is conveyed toward 
the atmosphere through two main channels: evaporation and transpiration. 
The former corresponds to the transformation of liquid water into a gaseous 
state and its release into the atmosphere. For the evaporation process to occur, 
soil moisture, vapor pressure gradient, and 600 calories of heat energy for 
every 1 gram of water are required. The transpiration mechanism consists of 
underground water transportation from the soil to a plant’s roots, then from the 
roots to the leaves through the vascular plant tissues, and ultimately, from plant 
tissues to evaporation into the atmosphere. As explained by Bhatt and Hossain 
(2019), transpiration is the most desired mechanism since water transportation 
through the plant’s internal structure also carries nutrients from the soil to the 
plant and prevents the plant’s tissue from overheating. However, measuring 
the two processes’ contributions to the amount of water in the atmosphere is 
difficult; therefore, their combined effects are usually measured with the ET 
index from RSPs. We use the total ET of crop locations as a proxy for measuring 
the crops’ rate of transpiration, which, by its effectiveness, will inform us of the 
crops’ health.

Our production-estimation methodology allows us to predict production for 
one crop in the region of interest before the harvesting period and at the commu-
nity level. Raster-type maps for historical production quantities for 42 crops 
and at a global scale are publicly available from the spatial production allocation 
model (SPAM) database (IFPRI 2016, 2019, 2020). They have been generated by 
an allocation model with a grid cell size of 10 kilometers. These maps are used 
for two purposes: (1) using the pixel production values as response variables to 
our model and (2) creating crop masks to target areas where a specific crop is 
believed to be grown. Table 9.2 summarizes the list of RSPs taken as inputs and 
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response variables for our food crop production model and their spatial and 
temporal characteristics.

Crop Selection for the Food Crop Production Model
African farmers are mostly smallholders who grow food for consumption and 
income. Because of chronic infrastructural and financial issues and difficulties in 
accessing agricultural inputs and markets, a relatively low-intensity shock could 
significantly impact their food security status. Therefore, having knowledge of 
potential future agricultural production before the harvesting period is essential 
for planning purposes. Crops should be targeted according to their relative 
importance for a country’s most vulnerable communities, especially during a 
major crisis such as the COVID-19 pandemic.

In this chapter, the criteria that determined the importance of a food crop 
were a combination of its production quantities and the food self-sufficiency of 
a country. Two rankings were performed to identify a country’s top 5 important 
food crops: the first was a ranking of the 10 most-produced food crops, and the 
second was a ranking of food crop self-sufficiency. The analysis relied on agricul-
tural variables that were publicly available on international databases. Production 
and domestic supply data for 2014–2018 (the most recently available years) were 
available from the Food and Agriculture Organization (FAO 2021). 

For each country, a preliminary list was developed of the 10 most-produced 

agricultural commodities in terms of quantities. Subsequently, the sufficiency 
aspect was included through the self-sufficiency ratio, defined by the share of 
food crop consumption to food crop production at the domestic level. The ratio 
evaluated whether a country produced enough food crops to cover its own 
needs for each of the 10 most-produced food crops. An agricultural commodity 
was considered essential for a country if the consumption was greater than the 
production. The list of the 5 primary produced and consumed commodities for 
each country by region are reported in Tables 9A.1, 9A.2, 9A.3, 9A.4, and 9A.5 in 
the appendix. 

The most predominant in the top five food crops among countries were 
selected for the regional level. Table 9.3 presents the selected list of crops for 
each region. In eastern Africa, maize, cassava, and sugarcane were selected as the 
major food crops. Indeed, 8 of 14 countries, based on our ranking, had maize and 
cassava as their top priority products in terms of production and consumption. 
Sugarcane was also essential for 9 of 14 eastern African countries. In western 
Africa, three crops were selected: cassava, rice, and maize. Cassava, maize, and 
wheat were identified as essential in central Africa, southern Africa, and northern 
Africa, respectively. Due to data representativeness considerations, only maize 
was considered for eastern Africa.

TABLE 9.2—INPUT PARAMETERS FOR THE FOOD CROP 
PRODUCTION MODEL WITH THEIR SPATIAL AND 
TEMPORAL CHARACTERISTICS

Input 
Parameters

Dataset ID
Spatial 
Resolution 
(km)

Temporal 
Resolution 
(days)

Temporal Extent 
(period)

NDVI MOD13A2 1.00 16 2000–NOW

LST-day MOD11A2 1.00 8 2000–NOW

Rainfall Africa_monthly 5.55 30 1981–DEC 2020

ET MOD16A2 0.50 8 2000–NOW

Production P 10.00 — 2000, 2005, 2010, 2017

Source: Authors.

TABLE 9.3—SELECTED LIST OF FOOD CROPS BY 
AFRICAN REGION

African Regions (# of 
Countries)

Food Crops
# of Countries where 
Crop Is in the Top 5 

Eastern Africa (14) 

Maize 8 

Cassava 8 

Sugarcane 9 

Central Africa (7) Cassava 5 

Southern Africa (5) Maize 3 

Northern Africa (5) Wheat 4 

Western Africa (16) 

Cassava 8 

Rice 9 

Maize 7 

Source: Authors.

http://resakss.org
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Predictive Modeling 
Framework
Data Preprocessing and Input 
Variable Prediction
Data preprocessing procedures were 
carried out to build the final dataset. 
The appendix describes the preprocess-
ing steps, which were data access; 
mosaicking; raster extraction and 
cleaning; reprojection, pixel resampling, 
and cropping; crop mask application; 
and dataframe construction. At the 
onset of a crop growing season, input 
variables are not promptly available on 
the MODIS data portal due to a delay 
between data gathering, processing, and 
online publishing processes. Since our 
model depends on those variables, we 
used their historical values to predict 
potential future trends, most specifi-
cally during the crop growing season. 
For this, a random forest (RF) model 
was used. RF is a supervised learning 
model that commonly is used for regres-
sion problems. It is also known as the 
bootstrap aggregator due to its two-step 
procedure to learn patterns within the 
dataset: (1) feature and raw sampling 
with replacement and (2) aggregation 
with majority-vote rule.

For the RF model used to forecast 
input variable values during the growing 
season, the Python open-source sklearn 

Source: Authors.

FIGURE 9.1—AN OVERVIEW OF THE AFCP MODEL DATA PROCESSING AND COMPUTATIONS
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RF regressor was used. One decision tree (DT) layer was created with 2,000 
blocks. 

The Africa Food Crop Production Model Computational Aspects
The supervised learning ANNs method was used to build the AfCP model. 
The inputs were the first four biogeophysical parameters listed in Table 9.2, 
and the corresponding outputs were the production values (Figure 9.1). A 
preprocessing data stage dealt with building the proper format and splitting the 
data into training, validation, and testing sets. The learning process was carried 
out by building the relationship between inputs and response variables with the 
training dataset that corresponded to 80 percent of the initial dataset. The vali-
dation data (10 percent of the dataset) were used to fine-tune the model. Finally, 
the testing data (the remaining 10 percent of the dataset) allowed assessment of 
the model accuracy. The model accuracy was assessed by comparing the model 
predictions on the test set with the corresponding actual values. This choice was 
motivated by the unavailability of ground-truth data at the same pixel level. An 
overall arithmetic average of out-of-sample root-mean-squared error (RMSE) of 
0.044 was obtained for all African countries (see Table 9A.6 in the appendix for 
a detailed overview of the model RMSE across countries and crops). In addition, 
the aggregated prediction data were compared with public databases such as 
FAOSTAT (FAO 2021) or food crop production as the sanity check for the AfCP 
model predictions. 

Forecasts were made before the harvesting period (in 2020) for each of 
the targeted crops (Table 9.3). The FAO crop calendar (FAO n.d.) was used 
to identify sowing, growing, and harvesting periods. For the eastern African 
region, cassava and sugarcane were not considered in this study due to data 
availability issues. For each country 4 and crop, the food crop production 
modeling work starts at the onset of crop greenness, which is considered the 
beginning of the growing season. Most of the biogeophysical parameters were 
not available at that time; therefore, their historical values were used in an RF 
regressor to estimate their future values in the growing season. The future values 
were then used as inputs in the food crop production model (see Section 3.3.1).

4 Food crop production forecasts were performed for each African country. Then national maps were merged together to obtain regional maps. Such a strategy is justified by the need to avoid the so-called 
“ecological fallacy,” which in this case means making predictions for a country based on an aggregated dataset at a continental level. The consequence of that would be country input data impacting the 
output data for another country.

Food Crop Production Forecasts During the 
Pandemic
The food crop production model was applied to all African countries and 
selected crops. Figures 9.2, 9.3, and 9.4 show the 2020 maps’ predicted produc-
tion as a share of the 2017 production for rice, maize, and cassava, respectively, 
for the western African countries. Figures 9.5 and 9.6 show the maize produc-
tion ratio for eastern and southern Africa, respectively. Figures 9.7 and 9.8 show 
wheat and cassava production ratios for northern and central African countries. 
Figures 9A.4 and 9A.5 in the appendix show the AfCP model’s outputs for 
western (rice, maize, cassava), eastern (maize), northern (wheat), southern 
(maize), and central (cassava) African regions, respectively.

At the regional level, the production quantities for most of the selected 
crops in each African region are expected to decline in 2020 as compared to 
2017. Only the production quantities for cassava in the western (Figure 9.4) 
and central (Figure 9.8) African regions are expected to increase, compared 
with 2017, by 4.2 percent and 28.4 percent, respectively. The sharpest decline in 
production quantities for the three selected crops in the western African region 
is expected for rice, with a decrease close to 12 percent, while maize production 
is expected to decline by close to 5 percent. The decline in maize production is 
expected to be around 1.5 percent and 18.6 percent for the eastern and southern 
African regions. Wheat production shows a decline of close to 10 percent in the 
northern African region in 2020 compared with 2017.

According to the FAO, the six central African countries’ aggregated 
cassava production was around 47 million metric tons in 2017 (FAO 2021). 
The most significant contributor was the Democratic Republic of the Congo 
(66.6 percent), followed by Angola (17.9 percent) and Cameroon (10.2 percent). 
Our model suggests a total cassava production of close to 60 million metric tons 
for the same countries in 2020, which corresponds to an increase of 28 percent 
compared to 2017. However, in 2020, the distribution of total production 
across individual countries is expected to remain the same for Angola, while 

http://resakss.org
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Cameroon’s shares are expected to decrease by roughly half (5.6 percent). The 
Democratic Republic of the Congo has a share increase of nearly 10 percent. 

In northern Africa, the ratios between predicted wheat production levels 
for the 2020 season and actual levels in 2017 show a slight decrease in 2020. 
On average, the map (Figure 9.7) suggests better wheat production for the 2017 
season compared with 2020 for Libya, Tunisia, Morocco, and Algeria. Compared 
with 2017 production levels, projected wheat production in 2020 in Sudan and 
Egypt shows an increase of 3.5 percent and 2.8 percent, respectively, while other 
countries show a decline. 

The aggregated maize production predicted from our model for eastern 
countries is around 28 million metric tons in 2020. Each country’s contribu-
tion to the global production is as follows: Ethiopia (27.7 percent), Tanzania 
(20.2 percent), Kenya (12.2 percent), Zambia (10.9 percent), Uganda 
(10.7 percent), Malawi (9.1 percent), Mozambique (5 percent), Zimbabwe 
(2.5 percent), Rwanda (1.1 percent), and Madagascar (0.8 percent). In 2017, 
the production was estimated at around 28.5 million metric tons for the same 
countries (IFPRI 2020). There is a slight decrease of 1.6 percent in 2020 produc-
tion estimates compared with 2017. However, some countries, such as Ethiopia, 
Zimbabwe, Uganda, and Zambia, show a slight increase in their production of 

Source: Authors. 
Note: If the ratio is above unity, the 2020 predicted production is expected to be larger than the 2017 
production. A ratio smaller than unity means an expected decrease in production in 2020 compared to 2017.

FIGURE 9.2—THE 2020 PREDICTED RICE PRODUCTION AS A 
SHARE OF THE 2017 PRODUCTION FOR WESTERN AFRICA 

Source: Authors. 
Note: If the ratio is above unity, the 2020 predicted production is expected to be larger than the 2017 
production. A ratio smaller than unity means an expected decrease in production in 2020 compared to 2017.

FIGURE 9.3—THE 2020 PREDICTED MAIZE PRODUCTION AS A 
SHARE OF THE 2017 PRODUCTION FOR WESTERN AFRICA
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0.8 percent, 13.2 percent, 4.6 percent, and 3.8 percent, respectively, compared 
with 2017.

Figure 9.6 shows ratios between predicted maize production levels for the 
2020 season and actual levels in 2017 in southern Africa. The map suggests 
disparities in maize production for the 2020 season compared with 2017. Maize 
production is expected to decline by 30 percent in South Africa, 20 percent in 
Lesotho, 4.9 percent in Eswatini, and 0.7 percent in Namibia from 2017 to 2020. 

While the biogeophysical parameters might not allow the establishment of 
a causal effect between the agricultural production variabilities and COVID-
19, the gap between FAO agricultural production data and the AfCP model 

predictions can provide information about the potential impacts of government 
restriction measures. 

Indeed, COVID-19 was declared a pandemic on March 11, 2020, and 
lockdown measures followed shortly afterward. The onset of the pandemic 
in Africa coincided with the seed marketing period for maize in West Africa 
and with the end of cassava seed marketing for the same region (de Boef et 
al. 2021). Seed scarcity is a consequence of mobility restriction measures, and 
it significantly affects food crop production and pushes farmers to rely more 
on the informal seed market, leading to less potential for high yields. From 
the same study, 79 percent of panelists from Myanmar, Nigeria, Ethiopia, and 
Uganda reported facing significant difficulty in obtaining sufficient volumes 
of quality early generation seeds of desired varieties. Moreover, according to a 
forecast from the national seed committees of member states of the Economic 
Community of West African States and the Permanent Interstate Committee 
for Drought Control in the Sahel, there will be a shortfall of certified seeds 
for maize and millet in the 2020 cropping season (CORAF 2020). Fewer than 
10,000 metric tons of certified sorghum and millet seeds were produced in 
2020 compared with a demand of about 100,000 metric tons, representing only 
about 10 percent availability. As for maize, about 70,000 metric tons are avail-
able, though the need is close to 200,000 metric tons (CORAF 2020). The lack 

Source: Authors. 
Note: If the ratio is above unity, the 2020 predicted production is expected to be larger than the 2017 
production. A ratio smaller than unity means an expected decrease in production in 2020 compared to 2017.

FIGURE 9.4—THE 2020 PREDICTED CASSAVA PRODUCTION AS 
A SHARE OF THE 2017 PRODUCTION FOR WESTERN AFRICA

TABLE 9.4—TOTAL PRODUCTION IN 2017 AND 2020, AND THE 
RATE OF CHANGE FOR EACH CROP AND AFRICAN REGION 

Region Crop
2017 Production 
(MT)

2020 Predicted 
Production (MT)

Rate of change 
(%)

Western Africa

Rice 17,803,495.8 15,640,125.8 –12.15

Maize 21,666,866.9 20,599,545.5 –4.92

Cassava 90,151,658.8 93,948,433.2 +4.21

Eastern Africa Maize 28,539,928.7 28,095,011.8 –1.55

Northern Africa Wheat 18,392,407.2 16,610,688.1 –9.68

Southern Africa Maize 420,814.5 342,688.3 –18.56

Central Africa Cassava 47,209,110.0 60,598,537.0 +28.36

Source: For 2017 production, FAOSTAT; for 2020 production, authors. 
Note: MT = metric tons.
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of timely reception and use of seeds due to mobility restriction measures can 
explain the food crop production decrease at the regional level. However, each 
country has its own COVID-19 policy for agricultural inputs and a different 
strategy to secure seeds for its national farmers. This could also explain why 
some countries in the same region show an increase in the production of a 
specific crop, while others show a decrease. However, only a comparative 
analysis between countries’ policies could help confirm this assertion. The seed 
scarcity also coincides with an increase in transaction costs that hinder farmers’ 
access to affordable and certified seeds.

The mobility restriction measures implemented to reduce the spread of 
COVID-19 have also affected labor mobility, especially for a labor-intensive 
sector such as agriculture. The sector employs 70 percent (World Bank 2013) of 
the total workforce in the region south of the Sahara. The planting period corre-
sponds to the peak of labor demand; therefore, any disruption in labor supply 
will potentially have a negative impact on food crop production. Moreover, most 
countries implemented border closures during the planting period of maize and 
rice, with the consequence of potentially delaying the harvesting period. There 
is a high probability that mobility restriction measures and labor scarcity will 
significantly impact the production of major staple crops in the region.

Source: Authors. 
Note: If the ratio is above unity, the 2020 predicted production is expected to be larger than the 2017 
production. A ratio smaller than unity means an expected decrease in production in 2020 compared to 2017.

FIGURE 9.5—THE 2020 PREDICTED MAIZE PRODUCTION AS A 
SHARE OF THE 2017 PRODUCTION FOR EASTERN AFRICA

Source: Authors. 
Note: If the ratio is above unity, the 2020 predicted production is expected to be larger than the 2017 
production. A ratio smaller than unity means an expected decrease in production in 2020 compared to 2017.

FIGURE 9.6—THE 2020 PREDICTED MAIZE PRODUCTION AS A 
SHARE OF THE 2017 PRODUCTION FOR SOUTHERN AFRICA
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As Figures 9.2–8 show, while many areas are expected to experience 
declines in 2020 production compared with 2017 levels, production is predicted 
to be higher in other areas. In addition to the impacts of COVID-19, many other 
factors affect crop production in complex ways: climate and weather variability 
in particular drive much of the variability in crop production.

In addition to the potential to monitor crops’ growing conditions through 
biogeophysical parameters, the combination of RSPs and machine learning 
provides several other benefits. The RSPs allow us to bring disaggregation to the 
community level while the machine learning techniques help us predict food 
crop production before the harvesting period. These two outcomes are valuable 

assets to strengthening food production systems in Africa through improved 
agricultural statistics and analytics. However, the path from RSPs and machine 
learning to policymaking in the agriculture sector requires several steps. 

The AfCP Model Limitations and Future 
Direction of Research
Nonbiogeophysical Input Parameters
The rationale for building the AfCP model was to provide data and forecasts 
about agricultural production to help navigate the uncertainties of COVID-19 

Source: Authors. 
Note: If the ratio is above unity, the 2020 predicted production is expected to be larger than the 2017 
production. A ratio smaller than unity means an expected decrease in production in 2020 compared to 2017.

FIGURE 9.7—THE 2020 PREDICTED WHEAT PRODUCTION AS A 
SHARE OF THE 2017 PRODUCTION FOR NORTHERN AFRICA

Source: Authors. 
Note: If the ratio is above unity, the 2020 predicted production is expected to be larger than the 2017 
production. A ratio smaller than unity means an expected decrease in production in 2020 compared to 2017.

FIGURE 9.8—THE 2020 PREDICTED CASSAVA PRODUCTION AS 
A SHARE OF THE 2017 PRODUCTION FOR CENTRAL AFRICA
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in the African agricultural sector. We also encountered the need to further 
disaggregate the data due to the localized impacts of such a crisis (or any 
crisis), which sometimes are either not perceived or are weakly perceived at the 
national level. In such a process, the choice of biogeophysical data for the AfCP 
was made for three main reasons: (1) they provide disaggregated data by nature, 
(2) they have sufficiently long time-series data for machine learning-type 
predictive modeling, and (3) they have direct effects on food crop production. 
However, we acknowledge that other nonbiogeophysical parameters can also 
have a significant impact on food production, such as population density (as 
a proxy for labor) and food security status. Such aspects will be included in a 
future version of the AfCP model.

Spatial Resolution
Another limitation of the AfCP is its spatial resolution, which is 10 kilometers. 
Such a low resolution is explained by the crop masks that were derived from 
SPAM production rasters. Because they were the lowest resolution maps among 
the input and response variables, the choice was made to aggregate the highest 
resolution rasters’ pixels to 10 kilometers rather than resampling the crop masks 
at a higher resolution, which would bring significant homogenization to the 
dataset and lower the learning capacity of the AfCP. While the 10-kilometer pixel 
values are representative of the area covered, they are much larger than typical 
African farm sizes of fewer than 2 hectares.

An improvement to the AfCP would be the use of higher spatial-resolution 
rasters, which would allow the further disaggregation of the predictions and 
increase the overall accuracy of the model. Such an improvement is ongoing, 
currently with a crop mask derived by the recently released cropland map at 10 
meters spatial resolution from the Environmental Systems Research Institute, 
based on data from Sentinel-2. However, the current degree of spatial resolution 
already allows us to predict production at a more disaggregated level than the 
usual administrative divisions in Africa and, therefore, to generate evidence to 
inform specific policies at the community level. 

Ground Truthing
Another limitation of the AfCP is that it was not calibrated with ground-truth 
data. The data that would allow for that are not available at the same spatial 

resolution. Therefore, the accuracy assessment was performed on the test set. 
There is a need to improve the model accuracy with countries’ data even though 
a comparison between predicted and actual values from public datasets, such 
as the FAOSTAT portal, yielded good results at subnational and national levels. 
AKADEMIYA2063 is working toward building the partnerships that would allow 
ground truthing. 

Conclusion
As suggested by the impacts of COVID-19, a robust African agricultural statistics 
system is much needed to create informed and targeted responses and policies. 
Building a culture of gathering accurate and timely data about features related to 
food crop production would not only facilitate the production of better policies 
and monitoring and evaluation mechanisms, it would also be critical to increas-
ing countries’ levels of preparedness for any potential future crisis in the sector. 
Data gathering could help improve preparedness by identifying the crisis early 
enough to mitigate its impacts or by allowing decision-makers and policymakers 
to better manage it. This chapter explains how emerging technologies such as 
RSPs and machine learning can be harnessed to provide valuable information for 
decision-making processes in the agricultural sector. The AfCP model has been 
in development from the onset of the COVID-19 crisis. Although the pandemic 
has been the pretext for the predictive modeling work, this sort of model archi-
tecture could be used or adapted outside of the COVID-19 context. However, it is 
worth noting that any adaptation will require carefully choosing the explanatory 
variables and ensuring their availability at the pixel level. The path from a raw 
satellite image to an informative map is not straightforward; several areas of 
expertise need to operate at different levels. 

Capacity building for emerging technologies such as remote sensing and 
machine learning should be institutionalized. African governments must create 
special units in which emerging technologies can be harnessed to inform policies. 
Moreover, incentivizing initiatives in the private sector to do the same would also 
benefit African countries. However, attracting students into the fields of emerging 
technologies requires both sectors to create solid public-private partnerships and 
support for entrepreneurship in science, technology, engineering, and math-
ematics to create jobs and ensure the availability of a critical mass of experts.
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Across African countries, data related to food crop production in the 
agricultural sector are collected at the season onset and after the harvesting 
period. The data are mainly collected at the household level, including household 
information, crop type, production quantities, land size, availability and use of 
agricultural inputs, post-harvest loss, and trade information. This methodology 
has proven sufficient for an extended period. However, given technological 
improvements and their use in more efficient data-gathering processes, there is 
a need to take full advantage of the current data-gathering technologies, such as 
unmanned aerial vehicles for spectral signature data gathering and monitoring 
purposes or tablets with predefined surveys combined with cloud infrastructure 
for storage and computations.

Metadata are as essential as primary data in obtaining the benefits of recent 
analytics tools and predictive modeling through machine learning. Metadata 
help to contextualize the primary datasets and add more explanatory variables 
into the predictive model for more robustness. The use of cloud technology, 
telecommunications, and tablets with embedded optimized forms could facilitate 
gathering such third-party information. The cloud would help to store the 
data and perform further analysis; the Internet connection could help gather 
GPS coordinates and inform about the locations where the data were gathered 
(not only at the household level but at the farm itself, allowing the analysis of 
biogeophysical parameters from RSPs). For this to occur, at least three enabling 
technologies are required: (1) the improvement of Internet connections in rural 
areas where most farms are located, (2) the inclusion of metadata information 
gathering into agricultural surveys, and (3) the renewal of data-gathering tools 
to migrate data from papers and laptops to tablets that are more suitable for such 
a task. Such an approach of using emerging and well-established technologies to 
support better-quality data gathering in the agricultural sector will progressively 
require fewer resources, because the use of remote sensing will reduce the need to 
update some data from the ground.

Information asymmetry between researchers and policymakers is a long-
standing problem in Africa, especially in the agricultural sector. Moreover, the 
fast pace of turnover in offices makes the consolidation of technical knowledge 
within an institution difficult. For instance, an individual at a national statistics 
bureau could be trained to work with remote sensing products and machine 
learning techniques within a year. The following year, that individual could have 

moved to another ministry, another entity of the same ministry, or another 
institution. From a general point of view, the training is not lost. However, the 
corresponding technical capacity moves from one entity to another with the risk 
that is not used where most needed. 

The complex African cropping system makes it difficult to collect accurate 
and timely data in a sustainable way. Data scarcity does not allow the type of 
detailed analysis that decision-making requires in a time of uncertainty. Even 
when the data quality and disaggregation requirements are met, however, the way 
the knowledge is produced seems to be inaccessible to policymakers, especially 
when emerging technologies are used and are far from reach. One way of closing 
this gap is to use data visualization expertise to transform data and knowledge 
from a raw stage to an informational stage. Such expertise is not yet well devel-
oped across African countries and needs to be built.

The results of this chapter not only support the use of emerging technologies 
such as RSPs and machine learning techniques to improve agricultural statistics, 
but also show how they could be leveraged to increase African countries’ 
preparedness to shocks after COVID-19. The pandemic has shown how much 
timely and accurate data are needed for early action and intervention in the 
agricultural sector and beyond. Recent technologies must be considered in every 
part of the data environment—from collection to analysis. 
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Appendix

Source: Data processing and map from authors.
Note: The values provided are relative to the twenty years (2000–2019) average for each pixel.  

FIGURE 9A.1—NDVI ANOMALY IN AFRICA FOR THE YEAR 2020

Source: Data processing and map from authors.
Note: The values provided are the absolute difference between the 2020 pixel values and their historical 
average (2000–2019). 

FIGURE 9A.2—DAYTIME LST ANOMALY IN AFRICA FOR THE 
YEAR 2020
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Appendix continued

Source: Data processing and map from authors.
Note: The values provided are the absolute difference between the 2020 pixel values and their historical 
average (2000–2019). 

FIGURE 9A.3—RAINFALL ANOMALY IN AFRICA FOR THE  
YEAR 2020
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Appendix continued

Source: Data, methodology, and maps from authors. 

FIGURE 9A.4—THE 2020 PREDICTED (A) RICE, (B) MAIZE, AND (C) CASSAVA PRODUCTION IN WESTERN AFRICAN COUNTRIES 

(a) Rice (b) Maize

(c) Cassava
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Appendix continued

Source: Data, methodology, and maps from authors. 

FIGURE 9A.5— THE 2020 PREDICTED (A) MAIZE PRODUCTION IN EASTERN AFRICAN COUNTRIES, (B) WHEAT PRODUCTION 
IN NORTHERN AFRICAN COUNTRIES, (C) MAIZE PRODUCTION IN SOUTHERN AFRICAN COUNTRIES, AND  (D) CASSAVA 
PRODUCTION IN CENTRAL AFRICAN COUNTRIES (continued on next page)

(a) Maize —eastern African countries (b) Wheat—northern African countries
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Appendix continued

Source: Data, methodology, and maps from authors. 

FIGURE 9A.5— THE 2020 PREDICTED (A) MAIZE PRODUCTION IN EASTERN AFRICAN COUNTRIES, (B) WHEAT PRODUCTION 
IN NORTHERN AFRICAN COUNTRIES, (C) MAIZE PRODUCTION IN SOUTHERN AFRICAN COUNTRIES, AND  (D) CASSAVA 
PRODUCTION IN CENTRAL AFRICAN COUNTRIES (continued from previous page)

(c) Maize—southern African countries (d) Cassava—central African countries
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Appendix continued

TABLE 9A.1—MOST SIGNIFICANT COMMODITIES BY COUNTRY IN WESTERN AFRICA REGION BASED ON OUR SELECTION 
CRITERIA
Country Commodity 1 Commodity 2 Commodity 3 Commodity 4 Commodity 5

Benin Cassava and products Yams Maize and products Beverages, fermented Palm kernels

Burkina Faso Beverages, fermented Sorghum and products Maize and products Millet and products Pulses, other, and products

Cabo Verde Sugarcane Pelagic fish Tomatoes and products Vegetables, other Milk, excluding butter

Côte d’Ivoire Yams Cassava and products Rice and products Palm kernels Sugarcane

Gambia Groundnuts (shelled 
equivalent)

Millet and products Milk, excluding butter Rice and products Beverages, fermented

Ghana Cassava and products Yams Plantains Palm kernels Maize and products

Guinea Rice and products Cassava and products Palm kernels Maize and products Groundnuts (shelled 
equivalent)

Guinea-Bissau Rice and products Nuts and products Roots, other Palm kernels Plantains

Liberia Cassava and products Rice and products Sugarcane Palm kernels Bananas

Mali Maize and products Rice and products Millet and products Vegetables, other Milk, excluding butter

Mauritania Pelagic fish Milk, excluding butter Rice and products Demersal fish Sorghum and products

Niger Millet and products Pulses, other, and products Sorghum and products Vegetables, other Milk, excluding butter

Nigeria Cassava and products Yams Vegetables, other Maize and products Palm kernels

Senegal Sugarcane Groundnuts (shelled 
equivalent)

Rice and products Millet and products Vegetables, other

Sierra Leone Cassava and products Rice and products Vegetables, other Palm kernels Milk, excluding butter

Togo Cassava and products Maize and products Yams Sorghum and products Beans

TABLE 9A.2—MOST SIGNIFICANT COMMODITIES BY COUNTRY IN NORTHERN AFRICA REGION BASED ON OUR SELECTION 
CRITERIA
Country Commodity 1 Commodity 2 Commodity 3 Commodity 4 Commodity 5

Algeria Vegetables, other Potatoes and products Milk, excluding butter Wheat and products Onions 

Egypt Sugarcane Sugar beet Wheat and products Vegetables, other Maize and products 

Morocco Wheat and products Sugar beet Vegetables, other Milk, excluding butter Barley and products 

Sudan Sugarcane Sorghum and products Milk, excluding butter Groundnuts (shelled 
equivalent) 

Onions 

Tunisia Vegetables, other Milk, excluding butter Tomatoes and products Wheat and products Olives (including preserved) 
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TABLE 9A.3—MOST SIGNIFICANT COMMODITIES BY COUNTRY IN SOUTHERN AFRICA REGION BASED ON OUR SELECTION 
CRITERIA
Country Commodity 1 Commodity 2 Commodity 3 Commodity 4 Commodity 5

Botswana Milk, excluding butter Beer Roots, other Vegetables, other Bovine meat 

Eswatini Sugarcane Sugar (raw equivalent) Alcohol, non-food Maize and products Roots, other 

Lesotho Milk, excluding butter Potatoes and products Maize and products Beer Vegetables, other 

Namibia Roots, other Pelagic fish Beer Demersal fish Milk, excluding butter 

South Africa Sugarcane Maize and products Milk, excluding butter Beer Potatoes and products 

Appendix continued

TABLE 9A.4—MOST SIGNIFICANT COMMODITIES BY COUNTRY IN CENTRAL AFRICA REGION BASED ON OUR SELECTION 
CRITERIA
Country Commodity 1 Commodity 2 Commodity 3 Commodity 4 Commodity 5

Angola Cassava and products Bananas Maize and products Sweet potatoes Beer 

Cameroon Cassava and products Plantains Maize and products Palm kernels Roots, other 

Central African Republic Cassava and products Yams Groundnuts (shelled 
equivalent) 

Roots, other Sugarcane 

Chad Sorghum and products Groundnuts (shelled 
equivalent) 

Millet and products Milk, excluding butter Cereals, other 

Congo Cassava and products Sugarcane Beer Vegetables, other Palm kernels 

Gabon Plantains Cassava and products Sugarcane Yams Beer 

Sao Tome and Principe Plantains Coconuts, including copra Palm kernels Roots, other Pelagic fish 
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Appendix continued

TABLE 9A.5—MOST SIGNIFICANT COMMODITIES BY COUNTRY IN EASTERN AFRICA REGION BASED ON OUR SELECTION 
CRITERIA
Country Commodity 1 Commodity 2 Commodity 3 Commodity 4 Commodity 5

Djibouti Vegetables, other Milk, excluding butter Bovine meat Mutton and goat meat Fruits, other 

Ethiopia Maize and products Roots, other Cereals, other Sorghum and products Wheat and products 

Kenya Sugarcane Milk, excluding butter Maize and products Vegetables, other Potatoes and products 

Madagascar Rice and products Sugarcane Cassava and products Sweet potatoes Fruits, other 

Malawi Cassava and products Sweet potatoes Maize and products Sugarcane Fruits, other 

Mauritius Sugarcane Sugar (raw equivalent) Vegetables, other Poultry meat Beer 

Mozambique Cassava and products Sugarcane Maize and products Milk, excluding butter Bananas 

Comoros Pelagic fish Marine fish, other Demersal fish Crustaceans  

Rwanda Bananas Sweet potatoes Cassava and products Potatoes and products Plantains 

Seychelles Pelagic fish Demersal fish Marine fish, other Fish, body oil Aquatic animals, other 

Uganda Sugarcane Plantains Cassava and products Maize and products Beverages, fermented 

United Republic of Tanzania Maize and products Cassava and products Sweet potatoes Bananas Sugarcane 

Zambia Sugarcane Maize and products Cassava and products Sugar (raw equivalent) Milk, excluding butter 

Zimbabwe Sugarcane Maize and products Sugar (raw equivalent) Milk, excluding butter Cassava and products 
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Appendix continued

TABLE 9A.6—THE AFCP MODEL TRAINING AND ACCURACY ASSESSMENT ACROSS COUNTRIES AND CROPS

Country Crop Minimum loss values Mean loss values Maximum loss values RMSE on test set RMSE on training set

Benin Maize 0.00169249 0.00433745 0.02844726 0.03255314 0.03179684

Guinea Maize 0.00242923 0.00383869 0.01885259 0.05860499 0.04483125

Ghana Maize 0.00249482 0.00436432 0.02395666 0.03866078 0.04119789

Mauritania Maize 0.00278496 0.00909949 0.04923604 0.03857696 0.03871264

Mali Maize 0.00198173 0.00337625 0.01827932 0.04331407 0.04117554

Nigeria Maize 0.00194973 0.00268457 0.01124211 0.03901889 0.04015009

Burkina Faso Maize 0.00158174 0.00369686 0.02626520 0.03382954 0.03097056

Senegal Maize 0.00106127 0.00281368 0.02088470 0.03361750 0.03085434

Guinea Bissau Maize 0.00578081 0.01599571 0.08813826 0.04639926 0.05752965

Togo Maize 0.00991938 0.02016226 0.09204900 0.10000162 0.08829238

Niger Maize 0.00074933 0.00233211 0.01700366 0.03924410 0.02696511

Sierra Leone Maize 0.00649442 0.01353270 0.06295945 0.05847860 0.07298443

Côte d’Ivoire Maize 0.00105507 0.00227436 0.01596227 0.02108761 0.02094848

Benin Cassava 0.00072762 0.00371670 0.03267188 0.01755675 0.01948215

Guinea Cassava 0.00503696 0.00712383 0.02860466 0.06488639 0.06247591

Ghana Cassava 0.00243144 0.00445531 0.02557120 0.04077162 0.04509468

Liberia Cassava 0.00256122 0.00774713 0.04726972 0.03403242 0.03722366

Nigeria Cassava 0.00185424 0.00277686 0.01209194 0.03993116 0.03968683

Togo Cassava 0.00822577 0.01443074 0.06153987 0.07971147 0.07548504

Sierra Leone Cassava 0.00185986 0.00511210 0.03064491 0.04245204 0.03845616

Côte d’Ivoire Cassava 0.00112116 0.00263257 0.03064491 0.03194575 0.03279232

Benin Rice 0.00071910 0.00496773 0.03950279 0.02117554 0.01622959

Guinea Rice 0.00191753 0.00384247 0.02495658 0.04171192 0.04041576

Ghana Rice 0.00088692 0.00214671 0.01569058 0.03193582 0.02447154

Liberia Rice 0.00742250 0.02365423 0.10664631 0.06688038 0.05961841

Mauritania Rice 0.01710714 0.04113854 0.09801760 0.04796407 0.07102053

Mali Rice 0.00110347 0.00215285 0.01203484 0.03269070 0.02598336

Nigeria Rice 0.00103784 0.00164344 0.00872079 0.03894496 0.03651457

Burkina Faso Rice 0.00071322 0.00207747 0.01740650 0.03520919 0.02500710
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Country Crop Minimum loss values Mean loss values Maximum loss values RMSE on test set RMSE on training set

Senegal Rice 0.00146573 0.00401248 0.02403932 0.01891044 0.02720833

Guinea Bissau Rice 0.01117795 0.02698722 0.12662517 0.08494826 0.08147735

Togo Rice 0.00422155 0.00930080 0.05174400 0.04264234 0.05302349

Niger Rice 0.00174473 0.00363644 0.01995699 0.03820201 0.03816552

Sierra Leone Rice 0.00671424 0.01431605 0.07641059 0.07168690 0.07429794

Côte d’Ivoire Rice 0.00259529 0.00527748 0.03147672 0.04233520 0.04016610

Libya Wheat 0.00273258 0.00718171 0.04165258 0.04484544 0.04225213

Sudan Wheat 0.00075528 0.00205568 0.01354778 0.03051089 0.02256988

Tunisia Wheat 0.00919501 0.01323656 0.04416724 0.09916451 0.08879559

Morocco Wheat 0.00685901 0.00816831 0.01921000 0.08206151 0.07935333

Egypt Wheat 0.01897007 0.02592046 0.06760812 0.11164873 0.11744088

Algeria Wheat 0.00295956 0.00403027 0.01379454 0.05042471 0.05085805

Kenya Maize 0.00416994 0.00630878 0.02369906 0.05508986 0.05735548

Malawi Maize 0.00751643 0.01245092 0.05270030 0.07838780 0.07839491

Zimbabwe Maize 0.00495353 0.00621669 0.01702104 0.05888519 0.06400499

Mozambique Maize 0.00064125 0.00131989 0.00947815 0.02158957 0.02111065

Ethiopia Maize 0.00164969 0.00228679 0.00935273 0.03716214 0.03755907

Uganda Maize 0.00255234 0.00430324 0.02320788 0.03919638 0.04631671

Tanzania Maize 0.00142267 0.00214565 0.01043562 0.03307371 0.03440688

Zambia Maize 0.00123491 0.00189236 0.00931647 0.03063931 0.03092630

Madagascar Maize 0.00025017 0.00086813 0.00857775 0.01171361 0.01382347

Rwanda Maize 0.00581005 0.01465933 0.06490663 0.05962805 0.05457481

Botswana Maize 0.00195286 0.00471188 0.02337214 0.04084127 0.03649043

Eswatini Maize 0.01283505 0.02411070 0.08909293 0.07191201 0.08209138

Namibia Maize 0.00106955 0.00322694 0.02578572 0.02222601 0.02848192

Lesotho Maize 0.01070529 0.02000675 0.06323701 0.07826008 0.09075452

South Africa Maize 0.00158438 0.00195824 0.00549064 0.03786032 0.03599981

DRC Cassava 0.00049400 0.00093600 0.00673400 0.01760200 0.01908400

Gabon Cassava 0.00049300 0.00280600 0.02357000 0.00589000 0.00887100

Congo Cassava 0.00136100 0.00328400 0.02398900 0.03479600 0.03287000

Central Africa Cassava 0.00135600 0.00298900 0.01983500 0.02625900 0.02808400

Angola Cassava 0.00031500 0.00072200 0.00545000 0.01251800 0.01243500

Cameroon Cassava 0.00084300 0.00193800 0.01437900 0.02412500 0.03040200

Note: The root mean squared error (RMSE) on the test set was used for the model accuracy assessment.
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Appendix continued

Description of Preprocessing Steps
Data Preprocessing
The overarching goal of the data preprocessing procedure was to build the 
final dataset, which will be used to train the algorithm to learn the relationship 
between the input features such as the NDVI, LST-day, rainfall, and ET, with the 
targeted crop production values. This was performed by using available historical 
data from 2005, 2010, and 2017. The latter selected years are constraints dictated 
by the data available on the SPAM data portal. The entire process described below 
was completed with Spyder-Python 3.7.0 provided in the open-source individual 
Anaconda distribution.

Data Access
The first step of the preprocessing stage is accessing the relevant remote sensing 
products. For the input data such as NDVI, LST-day, and ET (which are MODIS 
data), the open-source Python pymodis package was used. The datasets come 
with a hierarchical data format, which consists of several scientific dataset (SDS) 
layers. However, for raster-type maps such as rainfall and production, TIF images 
were downloaded.

The Mosaicking Process
The methodology developed in this chapter embeds a mosaicking process that 
puts together different tiles from the same sensing date to cover a specific region 
of interest. Such a process is specific to satellite images due to their trajectory 
around Earth. The MODIS global sinusoidal tile grid is composed of 595 tiles, 
460 of which are not filled. Tiles are 10 by 10 degrees at the equator with the 
following naming system: H_xx V_xx, where H_xx refers to the horizontal iden-
tification (ID), and V_xx, the vertical ID for any tile. The reference H_00 V_00 
corresponds to the upper-left corner, and the lower-right corner is H_35 V_17. 
For our area of interest (the African continent), a dictionary of countries and 
their corresponding tiles was built for automation purposes. The open-source 

Python Geospatial Data Abstraction Library (GDAL) package was used for coun-
tries that require merging several tiles for complete geographical coverage.

Raster Extraction and Cleaning Process
This step aims to extract only the needed SDS layers from remote sensing 
products and to drop unreliable pixels. For NDVI, SDS layers 1 (NDVI data) and 
12 (Pixel reliability) were used to extract NDVI layers and keep pixels that are 
labeled as good data (label 0) or marginal data (label 1). The exact process applies 
to the LST-day data where SDS layers 1 (LST data) and 2 (quality assurance data) 
were used. The process involves reading each raster of interest as a Python array 
with its corresponding index from the initial raster. Each data point that is not 
flagged as good or marginal data from the quality assurance layer is dropped. 
Then, a new raster is created using the open-source Python Rasterio package with 
the remaining data points.

Reprojection, Pixel Resampling, and Cropping
At this stage, the methodology dealt with three primary operations: reprojec-
tion, pixel resampling, and cropping. MODIS products that were selected for 
the predictive model were sinusoidal projected. For further computations with 
country administrative borders, both shapefiles and remote sensing products are 
required to have the same projection system. The GDAL package was also used 
to transform each raster projection system from sinusoidal to the 1984 world 
geodetic system (WGS84). 

In addition, pixel size needs to be the same between RSPs and crop masks 
for further computations. The SPAM spatial resolution was chosen as a reference 
for other rasters. Therefore, an average resampling procedure using the GDAL 
package was used to aggregate smaller pixels from NDVI, LST-day, rainfall, and 
ET data to match the SPAM maps’ pixel size. Finally, level 0 shapefile (national 
level) was applied to isolate the area of interest from the resulting map.



154   resakss.org

Appendix continued

Crop Mask Application
Production maps retrieved from the SPAM portal were used to further isolate 
explanatory variables at areas where a specific crop is grown. A crop mask was 
built by allocating a value of one to each pixel with a production value greater 
than or equal to one and zero elsewhere. Therefore, by performing the arithmetic 
product of this mask with all the maps that were generated above, the result was 
new NDVI, LST-day, rainfall, and ET rasters at pixels where the selected crop is 
grown. However, for the 2020 dataset, we used the 2017 generated mask.

From Raster to Dataframe
Explanatory and response variables are required to build a supervised agricul-
tural production model. In our case, each line (equivalent to a specific pixel) 
of the final dataset on which the model was built upon is a scenario. Therefore, 
the temporal resolution between inputs and outputs must match. However, 
production values are available at an annual basis, which means pixel values for 
input variables have to be annual, and for that, mean values were computed for 
each input feature during the crops’ growing season only. For one crop, the final 
outputs would be 18 mean (or annual) rasters that are cropped to the region of 
interest and correspond to the 3 rasters (2005, 2010, and 2017) times 6 variables 
(5 as inputs and one as output). Each country would have the same number 
of scenarios as its number of pixels; most countries have tens of thousands 
of scenarios.
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